F(x+3)=x^2-4x+6

Simple and best practice solution for F(x+3)=x^2-4x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x+3)=x^2-4x+6 equation:



(F+3)=F^2-4F+6
We move all terms to the left:
(F+3)-(F^2-4F+6)=0
We get rid of parentheses
-F^2+F+4F+3-6=0
We add all the numbers together, and all the variables
-1F^2+5F-3=0
a = -1; b = 5; c = -3;
Δ = b2-4ac
Δ = 52-4·(-1)·(-3)
Δ = 13
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{13}}{2*-1}=\frac{-5-\sqrt{13}}{-2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{13}}{2*-1}=\frac{-5+\sqrt{13}}{-2} $

See similar equations:

| -241=7(1-8n)-6n | | 7=-7/2x+9-1/2x | | 17j+3j−13j−j=6 | | (6x)x(5x)=30x^2 | | 3t+9=0T= | | 18j-15j-2j-j+4j=8 | | P(x)=(x+2)(x+5) | | 2x+54+4x-6=180 | | 12x-11/30=11x+23/45 | | (j+8)(j-8)=j | | 0.10(y-1)+0.14y=0.20y-0.01(30) | | 3x-22=3+5x | | -6x-9+8x=-6 | | 2x×16+2x+16+x+14+x+14=180 | | 11y-2y=36 | | u-27=12 | | 3/2m+3=4 | | 1=-5/2x+2-7/2x | | 3x+7-4x=-x-12+7-3x | | -3x-15+5x+13=6 | | 0.10(y-5)+0.06y=0.18y-0.01(70) | | 6x+7-5(x+1)=-4x-6 | | Y2+6y-360=0 | | 2(x+2)-1=2(x-5) | | 1(-2y+-7)=-13 | | 9z^2−54z=0 | | 3x2+14=8 | | 4.1x-14.95=7.6 | | 2*2=8m | | 0.12(y-8)+0.08y=0.14y-0.03(30) | | 1(-2y-7)=-13 | | 4=3/2m |

Equations solver categories